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Abstract

In this paper we deal with the numerical computation of one-dimensional, unsteady, free-surface flows over mobile-bed.
We focus on flows characterized by high concentration of sediments and strong interaction between flow and bottom
dynamics, as in hyper-concentrated- and debris-flows. These features are fully considered in the adopted system of equa-
tions. Challenging in its numerical approximation is the preservation of the coupling and the treatment of a non-conserva-
tive flux in the momentum equation. In order to devise a new Godunov-type approach, we analyzed in detail the Riemann
problem associated with the mobile-bed phenomena and the peculiar features of its wave relations. The scheme we devel-
oped is based on two supports: well-balanced treatment of the variable updating at the new time-level and flux evaluation by
three-wave approximations of the intercell Riemann-problem that, without any split, embody the effect of the non-conser-
vative term. The properties of the new numerical strategy (named AWB) are assessed by comparison with exact solutions of
Riemann problems, built by handling an inverse technique. Finally, AWB has been applied to cases of practical interest,
where wave interaction and friction effects makes the flow more complex. The obtained results point out that the new
method is able to predict faithfully the overall behaviour of the solution and of any type of waves. The use of AWB, in this
one-dimensional frame, is therefore fostered in representing rapid transients in river/torrent flows with movable bed.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The object of the work is to devise a numerical approach able to deal with a class of phenomena quite impor-
tant in mountain areas, that is the propagation of floods inside gullies, torrent or rivers after heavy rain, or
induced by the abrupt collapse of natural/artificial barriers. A crucial feature of the flows we consider is that
they transport sediments and induce morphological variations, that is erosional and depositional processes.
In these conditions the sediments may transfer from rest, in the bed, to motion and vice versa. This refers to
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2006.05.012

* Corresponding author. Tel.: +39 0461882621; fax: +39 0461882672.
E-mail addresses: giorgio.rosatti@ing.unitn.it (G. Rosatti), luigi.fraccarollo@ing.unitn.it (L. Fraccarollo).

mailto:giorgio.rosatti@ing.unitn.it
mailto:luigi.fraccarollo@ing.unitn.it


G. Rosatti, L. Fraccarollo / Journal of Computational Physics 220 (2006) 312–338 313
sediment-laden flows over mobile-bed, as reported in the title. We restrict the attention to problems with a fluid-
like general behaviour, and exclude therefore landslide, dry-mass movements and problems with heavy geotech-
nical implications, such as breach- and bank-ruptures. The main elements laying at the core of our mathematical
approach consist of immediate-equilibrium hypothesis and full coupling. Immediate-equilibrium means that the
solid discharge is linked to the local flow conditions via an algebraic relation, representing the transport-capacity
under uniform conditions. This choice, although controversial in the state-of-the-art [7], may be substantiated
on both theoretical and physical ground [13]. Actually, counter-measure works for debris flows, such as check
dams and sieving systems, in Alps and in Japanese mountains, exploit the fast fitting of sediment concentration
to flow velocity and viceversa, allowing deposition and stopping of the debris. Full coupling means that the mass
and momentum exchanges through the bottom-interface Cb (Fig. 1) are considered in their effects on the bulk
fluid-density and bed-level position. This issue, always neglected in ordinary sediment-transport problems, has
to be considered in rapidly transient flows with high sediment transport.

As far as the numerics is concerned, the nature of the problems, which admit discontinuities, addressed us
to exploit the capability of Godunov-type, finite-volume methods. The key point of these approaches consists
of the solution of local Riemann problems at the cell-interfaces. A preliminary analysis of the mathematical
model is therefore necessary in order to understand the possible wave-structures and the relations valid across
shock and rarefaction waves as well. The partial differential equation (PDE) system, formed by three equa-
tions, is strictly hyperbolic (see Section 2). Peculiarity of it, as in all depth-averaged models (shallow water)
is the presence of a non-conservative term in the momentum equation, expressing the pressure-thrust exerted
on the bottom. This physical quantity gives also rise, in shock conditions, to relations with one more term than
the standard Rankine–Hugoniot conditions for conservative problems (see Eq. 10). The expression of this
term has to be obtained from the integral formulation of the problem and not from its differential one.

The coupling between bed and flow dynamics, and the non-conservative nature of the mobile-bed model,
prevent a straightforward application of existing approaches without running into dramatic approximations
or substantially wrong results, as it will be shown. In particular, our experience suggests that the treatment of
the non-conservative term as a source term and the use of approximate Riemann solvers based on a reduced
number of wave-fields, although widely applied in other problems, are to be avoided in the problem here
considered. To the best of our knowledge, the only numerical-approach appeared in the literature that is appli-
cable to the fully-coupled model faced in this paper is the LHLL method proposed in [14], a Godunov-type
method based on the HLL Riemann-solver. The main innovation in LHLL is in the treatment of the non-
conservative flux, which is managed in partially unsplitted way. It has been successfully applied to the bench-
mark case of the erosional dam-break flood over an initial horizontal-bed, first faced in [8]. Nevertheless, the
application of this approach to some test-cases points out severe limitations in dealing with strong bed-
variations. We found that the bed-steps are soon smeared out at a rate which is ruled out by the numerics
and not by physical agents, leading, at some time, to a complete and wrong flattening of the bottom topog-
raphy. In application to real cases these shortcomings enhance, and some new ways to obtaining satisfying
numerical solutions have to be looked for. Unfortunately, the mentioned drawbacks are expected to affect
Fig. 1. Control volumes for the determination of the geomorphic shallow water equations.
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all Godunov-type methods, including higher-order versions (e.g. ENO/WENO [11,17], ADER [27] and
MUSTA [29] approaches), if they simplify the wave structure of the Riemann problem and consider the
non-conservative flux splitted from the conservative ones. Classical central methods such as Lax–Friedrichs
or Lax–Wrendroff (among the others) are expected to yield the very same limitations, as well. In this concern,
grid refinement could also be helpful, but are not often feasible in real-cases, in which the choice of cell dimen-
sion is somehow constrained (often, in riverine computation, only a limited number of cross-sections are
available).

In this paper we propose a new method, termed approximated well balanced (AWB), that is able to overcome
the limits above-mentioned. Somehow, it can be considered as a generalization to the mobile bed-case of the ori-
ginal well-balanced scheme by [16,10], devoted to shallow-water flows of clear water. The core of the approach
dwells in the solution of the intercell Riemann-problem, which has to take into account the non-conservative
term. This means to reach a solution with no splitting between conservative and non-conservative parts of
the fluxes. To fully cope with well-balanced-scheme demands, the intercell fluxes have to come out from the exact
solution of the Riemann problem, as in [10,16]. Unfortunately, for the problems considered in the present paper
no exact solutions can be handled, at least in an efficient numerical-algorithm. Therefore, we propose Riemann-
solvers that, although approximated, embody without any split the non-conservative term and, unlike HLL,
consider the correct number of wave-fields. Our technique to achieve an approximate Riemann solution is pre-
sented in a general form and is applicable to other nonlinear hyperbolic set of PDE’s, with expected improve-
ments with respect to HLL applications. The well-balanced character of the scheme preserves the numerical
solutions free from spurious effects in significant situations, such as the case of fluid at a steady rest (C-property,
[6]). In the end the new method shows the skill to deal with high slope-values and even with bed-steps under
strong transient-stages of the flow. The method is presented in the first-order version because the main numer-
ical-properties come out very clearly. Higher-order ones can be obtained from it quite straightforwardly.

In order to assess the quality of the numerical predictions, exact reference solutions have been obtained by
solving an inverse problem, in the way outlined by [3,13]. Many exact solutions may therefore be considered. In
the paper two of them have been selected, giving enough information relevant to the skill of any method to
reproduce them. Finally, we have chosen a case of practical interest in the field of engineering river control,
concerning the evolution of a trench initially dug in a river bed to extract, for the many possible purposes, sed-
iments. In this application wave interactions and friction effects make the flow more complex, and no relevant
exact solution is available; therefore we could just compare the results of AWB with the existing LHLL method.

The paper is structured as follows. At first the mathematical description of the problem is given (Section 2).
In Section 3, the LHLL method is briefly described. The AWB scheme is then presented (Section 4); two new
Riemann solvers are developed, based on a three-rarefaction or on three-shock approximation that, without
any split, embody the effect of the non-conservative term (Section 5). Results are obtained from both AWB
and LHLL for two tests with exact solution, and then for the evolving morphology associated to a trench
dug in the bed (Section 6). Concluding remarks (Section 7) end the paper.

2. Mathematical description

The mathematical model used in this paper is similar to that described in [13]: we refer to this work for a
detailed physical and theoretical framework. Moreover, we assume, as in [4], that the solid phase has a velocity
equal to the liquid one and that it is uniformly distributed over the flow depth. Hereafter we present the math-
ematical aspects that are essential for the development of the numerical approach.

Integral form of the mathematical model can be derived from writing conservation laws referring to appro-
priate control-volumes. In order to obtain a formulation that allows to get the expression of the shock rela-
tions (Section 2.2) that are valid in this context, mobile control-volumes, moving in the x direction at a
non-material speed v, must be employed.
o

ot

Z x2

x1

ðhþ zÞ dxþ ½ðu� vÞh� zv�x2

x1
¼ 0; ð1aÞ

o

ot

Z x2

x1

ðchþ cbzÞ dxþ ½chðu� vÞ � cbzv�x2

x1
¼ 0; ð1bÞ
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o

ot

Z x2

x1

ðuhðcDþ 1ÞÞ dxþ ðcDþ 1Þ uhðu� vÞ þ g
h2

2

� �� �x2

x1

�
Z x2

x1

pbx

qw

dCb ¼ �
Z x2

x1

s
qw

dCb: ð1cÞ
The first two equations of the system are obtained from the conservation of the mixture mass and the solid-
phase mass, referring to the control volume C + C 0 (see Fig. 1). The last equation derives from the momentum
balance of the mixture, using C only. Variables are the mixture depth h, the depth-averaged velocity u and the
elevation of the position of the bottom z; uh is the mixture flux, cuh is the sediment flux, where c is the volume
concentration of sediments in the flow, cb is the concentration of sediments in the bed (cb > c), qs is the density
of the solid phase, qw is the density of the water and D = (qs � qw)/qw is the submerged relative density of the
sediments. C and C 0 share the interface Cb, representing the bed-line, moving vertically with speed oz/ot.

Three further equations are needed to close the problem. The first one concerns the bed shear-stress s. A
general expression for it is:
s ¼ qwfu2; ð2Þ

where f is a function of sediment shape, diameter and concentration. Well-known Chézy and Bagnold [26]
relations are applicable to riverine and debris flows, respectively.

The second one must provide a relation between the concentration c and the primitive variables. For bed-
load transport in rivers and torrents, an equilibrium approximation can be expressed by the following
algebraic expression:
c ¼ cbb
u2

h
; ð3Þ
where b is an empirical parameter [25]. The previous relation can be obtained by employing some classical
expression for the transport capacity qs, e.g., Ashida and Michiue [5] or Meyer-Peter and Müller [21]; this last
one may be written as:
qs ¼
8

gD
s
q
� sc

q

� �3=2

; ð4Þ
where g is gravity, D is the submerged relative density of the sediments, q is the fluid density and sc is a con-
stant for a given grain-size. In problems with high sediment transport, as in the case we consider in the paper,
sc� s, and may be neglected. Now, by using Eq. (2), and being qs = cuh, we finally obtain the expression (3).

The third one is necessary to express the integral x-component of the pressure along the bottom line Cb. The
actual value of this term depends on the shape of the bed profile and on the pressure field; as a consequence, it
cannot be expressed in a quite general form. Further in the paper we will provide some reasonable hypotheses
under which it may be expressed in closed form. Importantly enough, the pressure thrust yields a term in the
momentum equation that has to be considered as a non-conservative flux, and plays a role in Rankine–
Hugoniot relations and in characteristic equations, as it will be exploited in the following sections.

As far as the subsequent mathematical description is concerned, the notation reported in Appendix A.1 is
employed.

2.1. Standard integral formulation

Setting v = 0, i.e. considering fixed control volumes, system (1) can be written in a more classical form:
o

ot

Z x2

x1

U dxþ Fjx2
� Fjx1 �

Z x2

x1

P dCb ¼
Z x2

x1

S dCb; ð5Þ
where
U ¼
hþ z

chþ cbz

uhðcDþ 1Þ

0
B@

1
CA; F ¼

uh

cuh

ðcDþ 1Þ u2hþ g h2

2

� �
0
B@

1
CA; P ¼

0

0
pbx
qw

0
B@

1
CA; S ¼

0

0

� s
qw

0
B@

1
CA: ð6Þ
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This formulation will be used further in the paper (Section 4) to obtain a well-balanced approach. The bottom-
stress term (in S) is a classical source term, and will not be considered in the following development. This
choice does not means that the fluid is considered inviscid, since the effect of the shear stress is fully considered
in causing the sediment movement (see derivation of Eq. (3)). Without this source term, anyway, the model
remains realistic in representing the first stages of flows in Riemann problems, as shown for the dam-break
case in [13]. The bottom shear-stress in S will be reconsidered dealing with cases of practical interest, later pro-
posed, where it plays a significant role.

2.2. Shock relations

The equations valid across a shock discontinuity propagating at a constant speed Si�1, i between constant
states i � 1 and i can be derived from system (1), by setting the control-volume velocity v equal to the shock
speed Si�1, i (Fig. 2). Being the flow stationary in the moving reference-system, temporal terms drop out, and
the first two conservation laws (Eqs. (1a) and (1b)) provide the following relations:
F i
j � F i�1

j ¼ Si�1;i U i
j � Ui�1

j

� �
; j ¼ 1; 2 ð7Þ
which are the standard Rankine–Hugoniot relations (hereafter, RH). The third equation (Eq. (1c)) comprises
the x-component of pressure along the bottom which, in this case, becomes a thrust over a vertical step
(Di�1;i

3 in Fig. 2). Its evaluation would actually require to know the two-dimensional flow around the bottom
step, which is another scientific topic. In a one-dimensional frame this closure-problem may be faced by rea-
sonable assumptions. In the following we assume that the pressure distribution in the mixture is hydrostatic
over the vertical step, and that the pressure head depends only on the free-surface level in either side of the
discontinuity where the bottom elevation is lower.

With reference to Fig. 2, we finally consider:
Di�1;i
3 ¼ gðcjDþ 1Þ hj �

j fi�1;i j
2

� �
fi�1;i; ð8Þ
where fi�1, i = zi�1 � zi, and
j ¼ i� 1 if zi�1
6 zi;

i if zi�1 > zi:

�

Nevertheless, different expressions from (8) could be considered as well, without changes in the theoretical and
numerical approach outlined in subsequent paragraphs. Eq. (1c) reads now:
F i
3 � F i�1

3 � Di�1;i
3 ¼ Si�1;i U i

3 � Ui�1
3

	 

ð9Þ
which represents the RH relation for the momentum equation.
Fig. 2. Control volumes used to obtain Rankine–Hugoniot type shock-relation.
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In compact form the RHs become:
Fi � Fi�1 �Di�1;i ¼ Si�1;iðUi �Ui�1Þ; ð10Þ
where Di�1;i ¼ ½0; 0;Di�1;i
3 �T is the vector of thrust terms.

A final remark concerns the entropy relation which must be satisfied by the shock in order to be physically
acceptable:
ki�1
i > Si�1;i > ki

i ð11Þ
being ki�1
i and ki

i the ith eigenvalues, upstream and downstream of the shock, respectively.

2.3. Eigenstructure and the linearized characteristic equations

Assuming smooth variation of the variables and almost parallel profiles of the free surface and of the bed,
the pressure is hydrostatic through the flow depth, and it therefore comes out:
pbx

qw

¼ �ghðcDþ 1Þ oz
ox
: ð12Þ
It is worthwhile observing that the integral expression (8) is consistent with the above differential one when the
step is infinitesimal. On the contrary, integration of Eq. (12) cannot be worked out to recover expression (8)
when the bottom is discontinuous. The PDEs system can be then obtained from (5) as result of the limit
x2! x1, and in compact form it is:
oU

ot
þ oF

ox
þH

oz
ox
¼ 0; ð13Þ
where
H ¼
0

0

ghðcDþ 1Þ:

0
B@

1
CA: ð14Þ
Eq. (13) can be written in quasi-linear form using the closure relation (3) for the concentration:
BðWÞ oW

ot
þ AðWÞ oW

ox
¼ 0; ð15Þ
where
W ¼
h

u

z

2
64
3
75; B ¼

1 0 1

0 2bcbu cb

u 3qu2 þ h 0

0
B@

1
CA; ð16Þ

A ¼
u h 0

0 3bcbu2 0
1
2
ru2 þ gh ð4qu2 þ rhÞu k

0
B@

1
CA ð17Þ
and k = gh(cD + 1), q = bcbD, r = qg + 2.
The eigenvalues of system (15) are calculated from the relationship:
detðA� kBÞ ¼ 0; ð18Þ
which results to be the third-order polynomial reported in Appendix A.2. The three solutions, as shown in [22]
or [13], are real and distinct, and therefore the geomorphic problem is strictly hyperbolic. Two eigenvalues
have the same sign of particle velocity u, one is opposite. We name them in ascending order: with u > 0,
it is k1 < 0, k2 P 0, k3 > 0 and k3 > k2, while k2 = 0 only if u = 0, i.e. the condition of fluid at rest.
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The right eigenvector associated to ki, written in term of primitive variables, is
Ki ¼
�kið�ubð3u� 2kiÞ þ hÞ

kiðu� kiÞ
ðubð3u� 2kiÞÞðu� kiÞ

0
B@

1
CA: ð19Þ
It is easy to verify that for the condition of water at rest K2 = 0 and also $k2 Æ K2 = 0; therefore the k2-field is
not genuinely nonlinear while the other fields are genuinely nonlinear.

A linearized expression of the characteristic equations associated to system (15), that will be used further in
the paper (Section 5.2), is the following:
C
oW

ot
þ K

oW

ox

� �
¼ 0; ð20Þ
where
K ¼
k1 0 0

0 k2 0

0 0 k3

2
64

3
75; C ¼

C1

C2

C3

2
64

3
75 ¼ TB; T ¼

T1

T2

T3

2
64

3
75 ð21Þ
and Ti, the left ith eigenvector associated to the ith eigenvalue, is
Ti ¼ �kiðs� kiuÞ ki
cb
ðs� kiuÞ þ ðu�kiÞ

cb
k ðu� kiÞki

� �
ð22Þ
being s ¼ 1
2
ru2 þ gh. The expression of Ci as function of W and ki is reported in Appendix A.3.

In explicit form, Eq. (20) writes:
Ci;1 dhþ Ci;2 duþ Ci;3 dz ¼ 0; along
dx
dt
¼ ki; with i ¼ 1; 3: ð23Þ
Integrating along the ith characteristic, and assigning Ci,j an average value Ci;j ¼ CiðŴ; k̂iÞ, where Ŵ; k̂i are
suitable values of the primitive variables and of the eigenvalues, the following linearized characteristic-
equations are obtained:
Ci � DW ¼ 0; with i ¼ 1; 3; ð24Þ

where DW ¼ ½Dh; Du; Dz�T is the vector of the variations of the primitive variables along each characteristic-
line. Ci can be considered a vector of weights ruling out the primitive-variable changes along the ith
characteristic.

3. The LHLL approach

In Sections 3 and 4 we deal with numerics, and the standard numerical notation is employed, where the
subscripts refer to the grid-position, and superscripts to time level. To the best of our knowledge, the only
numerical approach appeared in the literature, that can be applied straightforwardly to system (13), is that
one proposed in [14]. This method, called LHLL, has been used to integrate a system of PDEs very similar
to (13) and has been successfully applied to the erosional dam-break flood over an initial horizontal bed;
the comparison between the numerical results and experimental data was satisfactory [14]. LHLL is a
finite-volume Godunov-type one and is based on a HLL [18] scheme for the homogeneous conservative-part
of the system, and on a discretization of the non-conservative term with a ‘‘lateralization’’ approach: this leads
to a definition of two numerical fluxes for each interface, one for the right side, Fþiþ1=2; and one for the left side,
F�iþ1=2. For system (13), the resulting explicit expression for the flux is the following:
F�iþ1=2 ¼ FHLL þ S�

Sþ � S�
~H zn

iþ1 � zn
i

	 

; ð25Þ
where ~H ¼ 0:5ðHn
i þHn

iþ1Þ and S± are the velocity of the fastest and the slowest waves of the RP, respectively.
In order to respect the C-property [6], and to avoid some unphysical results, solid mass numerical fluxes F2

must be less than the total mass fluxes F1, and this is achieved with the following limiter:
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F 2 ¼ minmod ½F 2; F 1�: ð26Þ

We address to the original work [14] for a more detailed description and properties of the approach that leads
to (25) and (26). In Section 5.1.3 an interpretation of this method, in the framework of our new approach, will
be given. All considered, the lateralization technique copes with the non-conservative term in an unsplit way,
and not as a source term (i.e, by splitting technique).

Despite its successful application to the erosional dam-break problem, in more general situations the LHLL
method has shown some significant limits that prevent the use of this scheme in practical application. This fact
induced the writers to search for better schemes.

4. A well-balanced scheme for the movable-bed equations

The numerical approach we are going to present belongs to the well-balanced (WB) family, a class of expli-
cit schemes, introduced by [16,19] for rigid-bed flows, which can be considered an extension of the Godunov
[15] numerical approach to hyperbolic systems with stiff source and/or non-conservative terms. WB schemes
are completely unsplitted approaches since they consider these last terms both into the solution of Riemann
problems and to update the conserved variables. In the following, we will present a first-order scheme, leaving
extensions to higher orders to forthcoming work. We assume constant cell-size Dx, the center of which is
located at position xi, whereas the intercell positions around xi are xi�1/2 = xi � Dx/2 and xi+1/2 = xi + Dx/2.

In general, finite-volume schemes are obtained integrating a system of PDEs over (tn, tn+1) · (xi�1/2,xi+1/2).
Nevertheless we have already stressed as the space integration of PDE system (13) leads to integral form (5)
only if the solution is smooth. Therefore, in order to manage a general expression, Eq. (5), is evaluated
between x2 = xi+1/2, x1 = xi�1/2 and integrated over (tn, tn+1):
Z tnþ1

tn

o

ot

Z xiþ1=2

xi�1=2

Uðx; tÞ dxþ FðUðxiþ1=2; tÞÞ � FðUðxi�1=2; tÞÞ �
Z xiþ1=2

xi�1=2

Pðx; tÞ dCb

 !
dt ¼ 0: ð27Þ
With the following standard cell-average definitions,
Un
i ¼

1

Dx

Z xiþ1=2

xi�1=2

Uðx; tnÞ dx; ð28Þ

Fi�1=2 ¼
1

Dt

Z tnþ1

tn
FðUðxi�1=2; tÞÞ dt; ð29Þ

Pi ¼
1

Dt

Z tnþ1

tn

Z xiþ1=2

xi�1=2

Pðx; tÞ dCb dt; ð30Þ
the relevant compact expression becomes:
Unþ1
i ¼ Un

i �
Dt
Dx
ðFiþ1=2 � Fi�1=2 � PiÞ: ð31Þ
In the framework of a WB approach, the updated conserved variable Unþ1
i comes out from a cell-average after

the evolution of the local RPs on either side of the cell (see e.g. [28, Chapter 6]). With an equivalent statement,
numerical fluxes can be expressed as
Fiþ1=2 ¼ FðUn
iþ1=2ð0ÞÞ; ð32Þ
where Un
iþ1=2ðx=tÞ is the self-similar solution of the local RP with left initial condition Un

i and right initial one
Un

iþ1. Likewise, Fi�1=2 ¼ FðUn
i�1=2ð0ÞÞ. Also the value of Pi must come out from the same RP solution, but being

P(x, t) not available in analytical form, it is not easy to be evaluated.
A direct procedure to obtain exact solutions of the RPs is not readily available. Therefore, we propose to

use approximate Riemmann-solvers that are able to keep the main features of the exact solution, i.e. wave-
structure and unsplit evaluation of the pressure term. In Section 5 some solvers with this property will be
provided. We also propose an approximate expression for Pi assuming a step-wise configuration of each
wave-field. In this way the pressure term is approximated as a sum of thrusts, each one calculated by



Fig. 3. Schematic of the AWB approximation of the flow-field evolution in the ith cell due to the two intercell RPs.
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Eq. (8). Moreover, between two subsequent fields in the RP solution, the bed is horizontal and no pressure in
x-direction is exerted over it. The spatial integral in (30) is therefore supplied only with contributions Dm�1, m

coming from the wave-fields affecting the cell (see Fig. 3). At last, because of the self-similar character of the
RP solution, any Dm�1,m is time independent and then Pi becomes:
Pi ’
X3

m¼ki�1=2

Dm�1;m
i�1=2 þ

Xkiþ1=2

m¼1

Dm�1;m
iþ1=2 ; ð33Þ
where ki±1/2 are, respectively, the first and the last ordered number of waves that lay inside the cell. Their val-
ues depends on the sign of the velocities of the developing RPs: in case of positive particle-velocity all over the
solution, as in Fig. 3, waves inside the cell are the first field of the downstream RP (i.e., ki+1/2 = 1), and the
second and third fields of the upstream RP (i.e. ki�1/2 = 2). In this case we obtain:
Pi ’ D0;1
iþ1=2 þD1;2

i�1=2 þD2;3
i�1=2: ð34Þ
We are able to provide the final expression of the proposed approximated well-balanced (AWB) scheme:
Unþ1
i ¼ Un

i �
Dt
Dx
ðF�iþ1=2 � Fþi�1=2Þ; ð35Þ
where
Fþi�1=2 ¼ Fi�1=2 þ
X3

m¼ki�1=2

Dm�1;m
i�1=2 ; F�iþ1=2 ¼ Fiþ1=2 þ

Xkiþ1=2

m¼1

Dm�1;m
iþ1=2 ð36Þ
and Fi±1/2 are obtained by
Fi�1=2 ¼ Fð~Un
i�1=2ð0ÞÞ; ð37Þ
where ~Un
iþ1=2ð0Þ is the approximated solution of the RPs. In order to ensure the stability of the numerical

scheme, the well known following CFL condition must be verified:
Dt 6
Dx
jkMj

;

where jkMj is the maximum wave speed of each local RP.
Several properties of the scheme above presented depend on the choice of the approximated solver used in

(37). Anyhow, some general features can be highlighted.
The first issue concerns the skill of the methods to capture the shocks at the right strength (and speed, as a

consequence). Following [20], let us consider a problem with initial value u0(x) and constant boundary-con-
ditions at x = 0 and x = MDx for the time-period 0 6 t 6 NDt. Setting U0

i equal to the ith cell-averaged initial
value, it holds:
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Z MDx

0

u0ðxÞ dx ¼ Dx
XM

i¼0

U0
i : ð38Þ
At time t = NDt, the integral of the exact solution over the domain [0,MDx] can be written in the following
form:
Z MDx

0

uðx;NDtÞ dx ¼
Z MDx

0

u0ðxÞ dx� NDt½Fjx¼MDx � Fjx¼0� �
Z NDt

0

Z MDx

0

Pðx; tÞ dCb dt; ð39Þ
where F is the physical flux function.
Instead, the numerical approximation of the previous integral can be obtained from Eq. (31) by using both

the telescopic and the consistency property of the numerical fluxes Fi±1/2:
Dx
XM

i¼0

UN
i ¼ Dx

XM

i¼0

U0
i � NDt Fjx¼MDx � Fjx¼0 þ

XM

i¼0

XN

j¼0

Pj
i

 !" #
: ð40Þ
By comparing Eq. (40) with Eq. (39), it becomes clear that the space-integral of the numerical state-variable U,
over the whole flow domain at any time-level N, is exact only if:
XM

i¼0

XN

j¼0

Pj
i

 !
¼
Z NDt

0

Z MDx

0

Pðx; tÞ dCb dt: ð41Þ
In our scheme this equality is trivially true for the first two equations but not for the momentum one. As a
consequence, while the conservation of water and sediment volume is assured, shock-waves may numerically
take place with a wrong speed and strength. This is an interesting feature, which becomes more important in
long-term simulations, and is not, conversely, so significant in the corresponding cases over rigid bed.

The second property regards the behaviour of the approach when sediment transport vanishes. Only minor
specifications are necessary to make the scheme working also in this limit situation. Firstly, it must be noticed
that with c = 0 no sediment transport occurs and system (13) reduces to the classical shallow-water equations
augmented with the fixed bed condition ozb/ot = 0. The number of waves of the RP does not change. More-
over, the speed of the second field vanishes: this means that bottom discontinuities do not evolve. The defini-
tion of ki±1/2, employed in Eq. (33), is still valid if we pose any bed-discontinuity at a small distance e on the
right of the interface and we let e! 0. Finally, since flux function is discontinuous at the cell interface, we have
to use the value in the limit position x/t = 0�:
Fiþ1=2 ¼ Fð~Un
iþ1=2ð0

�ÞÞ: ð42Þ
The scheme resulting in this case is very similar to the one proposed by [10] for the fixed-bed case. Anyway,
it is necessary to say that a mobile-bed solver could yield problems in the limit of fixed-bed. This is due to
the particular wave-patterns that may take place in this case, i.e. the resonance phenomena faced by [1,10],
which requires specific care in handling the solver. Solving these problems is by now beyond the scope of
this paper.

An important fixed-bed situation is the steady condition of no fluid-motion over discontinuous bed topog-
raphy. It is possible to show that the scheme satisfies the C-property [6], provided that the solver gives the
exact momentum flux. Let us consider the case of Fig. 4. In this situation the first wave-field is negative,
the second is standing while the third one is positive; since no thrust is associate to the first and third field,
it follows:
D0;1 ¼ D2;3 ¼ 0;

D1;2 6¼ 0:
Using Eq. (36), and assuming an exact solution for the RP, fluxes become:
F�iþ1=2 ¼ FðUn
iþ1=2ð0

�ÞÞ; ð43Þ
Fþiþ1=2 ¼ FðUn

iþ1=2ð0
�ÞÞ þD1;2: ð44Þ



Fig. 4. Case of water at rest: scheme of the momentum fluxes around a bed-step.
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In this situation the only flux components that are not null are the hydrostatic thrusts in the momentum
expressions. Considering cell i, the side fluxes balance exactly, because FðUn

iþ1=2ð0
�ÞÞ is the hydrostatic thrust

associated to a depth h1. For the cell i + 1, the numerical flux Fþiþ1=2 is the sum of the thrust of the fluid
above the step and the thrust exerted by the step, and this sum balances exactly the flux F�iþ3=2. In these
conditions the conserved variables do not change and the no-motion condition is preserved. In Section 5
we will show that the proposed solvers meet the requirement of giving the exact solution in this steady-state
condition.

5. Three-wave Riemann solvers

The AWB scheme proposed in the previous section needs to specify the evaluation of the numerical fluxes
as resulting from solution of RPs. Here, two approximate ways are presented. The first one assumes that the
wave-fields are all shocks while, the second one, all rarefactions. Hereafter, for both situations, firstly we pres-
ent a general approach, then we describe in detail the solvers for the geomorphic problem.

5.1. A three-shocks Riemann solver

The formulation of the three-shocks Riemann solver (3SRS) we are going to present shares the underlying
philosophy that led to the well-known HLL solver [18] and can be considered as its natural extension. We con-
sider here the case of a conservative PDE system composed by n equations, while in the next section a more
general approach for a non-conservative system will be outlined. A short review of the HLL scheme is
reported hereafter.

The HLL method assumes that the RP, despite its actual wave-composition, is constituted by a constant
central state connected to the left and to the right states by shock waves. The unknowns of the RP problem
are the speeds of the two shock waves, the n fluxes F and the n conserved variables U in the inner state. The
total number of unknown is 2 · n + 2 and therefore, in order to solve exactly the problem, the same number
of equations are needed. Available relations are the RH ones, which amount to 2 · n, and n constitutive
expressions, usually nonlinear, which relate fluxes to conserved variables in the inner state (F = F(U)). Solv-
ing the resulting nonlinear system can be a very expensive task. In the HLL approach, a way to approximate
the solution is obtained with an explicit estimate (i.e. based only on the left and right known states) of the
shock speeds. This choice reduces the number of unknowns to 2 · n and makes the RH relations linear in
term of the n conserved variables and n fluxes. Now, since the number of reduced unknowns is equal to
the number of RH equations, it is obvious to use them as the solving system, wiping out, in this way,
the nonlinear F = F(U) equations from the original set. The following well-known expression can therefore
be obtained:
FHLL ¼ S1;2F0 � S0;1F2 þ S1;2S0;1ðU2 �U0Þ
S1;2 � S0;1

: ð45Þ



Fig. 5. Three-shocks configuration and associated pressure-thrusts in the 3RSS approximation at time t = t*.
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A key choice of the HLL approach concerns the estimates of the shock speeds; relevant information may be
extracted from the eigenvalues of the system. Finally, it worths noticing that the nonlinear relations between
conserved and primitive variables are fully kept in HLL approach.

In the 3SRS we assume that the RP, despite the actual wave composition, is constituted by two con-
stant inner-states and three shock-waves (Fig. 5). The number of unknowns of the resulting RP are
4 · n + 3. Available relations are the 3 · n RH expressions and 2 · n nonlinear equations linking fluxes
to conserved variables in the two inner-states. For n = 3 the number of equations are equal to the number
of unknown while for n > 3 the number of equations exceeds the number of unknowns and therefore some
relations must be disregarded. Again, as for the case with a single inner-state (as in HLL), whatever is
n P 3, the solution of the resulting system may be overwhelmingly difficult. As in the HLL approach, a
way to approximate the problem is to assume an explicit estimate of the shock speeds: the number of
unknowns is reduced to 4 · n and the 3 · n RH relations become linear. Despite HLL, RH relations
are anyway not sufficient to solve the problem, and n more equations must be provided. They must be
chosen in the set F = F(U) in both the inner states. If these relations are linear, the resulting system is
linear too, otherwise, as in the mobile-bed case, the resulting system becomes nonlinear and a specific
method to deal with it must be used.

5.1.1. A three-shock Riemann solver for mobile-bed flows

Besides the question of solving a nonlinear system, another problem arises in the mobile-bed case: the RH
relations (see Eq. (10)) present one more term respect the expressions deriving from conservative system of
PDEs. Therefore, the linearization of the RH equations cannot be achieved simply assuming the value of
the shock speed: also an estimate of the thrust term must be provided. The following explicit evaluation of
the thrust may be obtained from the initial states of the RP:
~D0;3 ¼ gðcjDþ 1Þ hj �
jf0;3j

2

� �
f0;3; ð46Þ
where f0,3 = z0 � z3, j = 0 if z0 < z3 and j = 3 otherwise (see Fig. 5). Nevertheless, since the RP solution pre-
sents three thrust terms, it is necessary to make an assumption regarding the distribution of ~D0;3 among the
shocks.

To achieve accurate approximation of the RP solution in the framework of the 3SRS, we need, in the end,
an algorithm to solve a nonlinear system, good estimation of the shock-speeds and the thrust term associated
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to each wave. Since there is no direct way to pick up these quantities from the initial states, we suggest the
following two-steps approach.

(1) First step

(a) estimate of the shock speeds and the thrust terms: for the shock speed we assume the following

average

Si�1;i ¼ 0:5 k0
i þ k3

i

	 

; i ¼ 1; 3; ð47Þ
where ½S0;1 S1;2 S2;3�T is the vector of the shock speeds and ½ki
1 ki

2 ki
3�

T is the vector of the eigenvalues
evaluated in the ith zone. As far as the thrust term, we have verified that good results can be obtained
giving the whole estimated thrust ~D0;3 to D1;2

3 , i.e. the central shock, and therefore:
D0;1 ¼ D2;3 ¼
0

0

0

2
64
3
75; D1;2 ¼

0

0
~D0;3

2
64

3
75 ð48Þ

(b) the system: the system of 12 equations is composed by:

� the 3 · 3 = 9 RH relations (Eq. (10)) across each wave:
Fi � Fi�1 �Di�1;i ¼ Si�1;iðUi �Ui�1Þ; i ¼ 1; 3 ð49Þ
� two linear constitutive relations between fluxes and conserved variables:
U 1
3 ¼ F 1

1 þ DF 1
2; ð51aÞ

U 2
3 ¼ F 2

1 þ DF 2
2 ð51bÞ
� among the possible choices for the last constitutive equation, we have chosen the following one
which leads to a solving system with the lowest degree of complexity:
F 1
2 ¼ cbb

cbF 1
1 � F 1

2

cbU 1
1 � U 1

2

� �3

ð52Þ

(c) the solution: the solution of the previous system has been obtained in the following way:

� at first, it is possible to solve analytically the reduced system made up of the 11 linear equations,

obtaining, as solutions, linear functions of a chosen unknown, namely U 1
2; the coefficients of the

polynomials depend only on the initial-state conserved variables (see Appendix A.4 for explicit
expressions);
� the substitution of the obtained expressions in Eq. (52) gives rise to a polynomial of fourth degree

in the unknown U 1
2 (see again Appendix A.4) that can be solved with well-known algorithms (see

e.g. [30]). In general, the polynomial admits several solutions and therefore the right one must be
picked up using some constraints (see e.g. [3]). We used the physical constraint that the total flux F i

1

and sediment flux F i
2 must have the same sign. An heuristic demonstration that this necessary con-

dition is also sufficient comes from the convergence observed for all the several tests we performed.
(2) Second step

From the conserved variable obtained at the previous step, we evaluate the primitive variables in each
inner state. Afterwards, the shock speeds are updated from an average of the corresponding eigenvalues
Si�1;i ¼ 0:5 ki�1
i þ ki

i

	 

; i ¼ 1; 3 ð53Þ
while the explicit estimate of the thrust associated to each wave (Di�1, i, i = 1,3) is now available by Eq.
(8) (see also Fig. 5). Finally, the points (b) and (c) of the first step are repeated, starting with the new
values of the shock speeds and of the thrust terms. By doing so, the proposed solution of the RP con-
siders the non-conservative flux in a somehow implicit way.
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5.1.2. C-property of the AWB scheme with the 3SRS solver

As explained in Section 4, in order to prove that the AWB scheme with 3SRS satisfies the C-property, is
sufficient to demonstrate that the condition of no fluid-motion over discontinuous bed topography (Fig. 4)
is solution of the system solved by 3SRS in the first step. The second step is then skipped. It worths remem-
bering that, in this situation, the momentum fluxes reduces to the hydrostatic thrusts.

Shock speeds evaluated with Eq. (47) give a Riemann structure in the x–t plane that is symmetric, with a
vertical middle wave. The assumption with regard to the thrust terms (Eq. (48)) leads to the following RH
relations:
F0 � F1 ¼ S0;1ðU0 �U1Þ; ð54aÞ
F2 � F3 ¼ S2;3ðU2 �U3Þ; ð54bÞ
F2 � F1 �D1;2 ¼ 0: ð54cÞ
The first two equations are obviously satisfied by the following constant solutions:
F0 ¼ F1;

U0 ¼ U1;

(
F2 ¼ F3;

U2 ¼ U3:

(
ð55Þ
Moreover, they also satisfy the third one because D1,2 corresponds to the exact thrust term P which balances
the momentum fluxes in no-motion condition. At last, these solutions satisfy automatically also the constitu-
tive Eqs. (51) and (52). In other words, since the system solved by 3SRS in no-motion condition is exact, the
solution is exact too.

5.1.3. LHLL as a simplified 3SRS

The theoretical framework we presented in the previous section can be used to show that the LHLL
approach, presented in Section 3, is nothing but the AWB scheme with a very simplified version of the
3SRS. This helps to understand why LHLL may provide good results only in certain conditions.

The first assumption consists of setting the speed of the middle wave S1,2 to zero. Therefore, it is clear that
when this speed is significantly different from zero, the error may become significant. Moreover, the thrust
terms Dm�1,m are evaluated as in the first step of the 3SRS, that is the total trust is assigned to the central wave.
With this hypothesis, the set of equation deriving from the three RH conditions across the waves becomes,
incidentally, equal to Eq. (54). To close this system, instead of using constitutive relations, the following equal-
ity between conserved variables in the two inner states is assumed:
U1 ¼ U2: ð56Þ

This hypothesis is absolutely arbitrary, but renders the set of equation (Eqs. (54) and (56)) linear, whose solu-
tion is given by Eq. (25) with ~D0;3 instead of ~Hðzn

iþ1 � zn
i Þ.

As far as the treatment of the non-conservative flux, we finally remark that both AWB and LHLL
methods deal with it in an unsplitting way, but, whilst the latter is fully explicit, the former is somehow
implicit.

5.2. A three-rarefaction Riemann solver for mobile-bed flows

In the literature, a number of Riemann solvers based on rarefaction waves has been proposed for different
problems (see e.g. [9,12]). They assume that the RP is constituted by n � 1 constant states, connected by n

rarefactions, being n, as usual, the number of equations. In terms of primitive variables, the number of
unknowns is n · (n � 1), equal to the number n of primitive variables multiplied by the number n � 1 of
the inner constant-states. (n � 1) Riemann-invariants across each wave may be involved, so forming a set
of n · (n � 1) differential equations. The problem is therefore formally solvable but, because of its high
non-linearity, it can be solved only with some linearization. The scheme we are going to present will be out-
lined for our case, where n = 3, but can be plainly extended to problems with n > 3. In the approach with three
rarefaction-waves, named 3RRS, instead of Riemann invariants, we use the canonical equations, valid along
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the characteristic lines, to connect the different constant-states. This choice has been suggested by preliminary
tests, here unreported. Our approach is based on the following assumptions:

a. each rarefaction-fan collapses into a single line in the {x � t} domain;
b. characteristic curves are assumed to be straight lines with a slope dx=dt ¼ 1=~kk;kþ1

j , where ~kk;kþ1
j is a rep-

resentative estimate of the jth eigenvalue in the rarefaction fan after the kth constant state.

This approach, when applied to cases with significant geomorphic evolution, has showed to yield not-
enough accurate solutions if applied in one shot; therefore a two-step treatment has again, as in 3SRS, been
exploited. In detail:

(1) Each point of a star zone (e.g., points 1 and 2 in Fig. 6a) can be connected to the left and right initial-
data through the three characteristic-lines reaching it; using Eq. (24), the following two linear systems
can be written:
Fig
zone 1

C0;3
1 � ð ~W1 �W3Þ ¼ 0;

C0;3
2 � ð ~W1 �W0Þ ¼ 0;

C0;3
3 � ð ~W1 �W0Þ ¼ 0;

8><
>: ð57Þ

zone 2

C0;3
1 � ð ~W2 �W3Þ ¼ 0;

C0;3
2 � ð ~W2 �W3Þ ¼ 0;

C0;3
3 � ð ~W2 �W0Þ ¼ 0;

8><
>: ð58Þ
where ~Wk is the vector of the primitive variables evaluated in zones k = 1,2, and
C0;3
i ¼ Ci

1

2
ðW0 þW3Þ; ~k0;3

i

� �
; ~k0;3

i ¼
1

2
ðkiðW0Þ þ kiðW3ÞÞ ð59Þ
(see (A.3) for the definition Ci(W,k)). This step, which gives an approximate solution ~W, can be consid-
ered as an application of the method of characteristics to the solution of a particular RP (see e.g. [24]).

(2) Starting from the approximated solution ~W, it is possible to write two equations valid across each rar-
efaction wave (see Fig. 6b) obtaining the following linear system:
C01
3 � ðW

1 �W0Þ ¼ 0

C01
2 � ðW1 �W0Þ ¼ 0

)
across k1;

C12
1 � ðW

2 �W1Þ ¼ 0

C12
3 � ðW2 �W1Þ ¼ 0

)
across k2;

C23
1 � ðW

3 �W2Þ ¼ 0

C23
2 � ðW3 �W2Þ ¼ 0

)
across k3;

8>>>>>>>>>><
>>>>>>>>>>:

ð60Þ
where
. 6. Pattern of the characteristic lines in the (a) first iteration and (b) second iteration, employed in the 3RRS approximation.
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Cm;mþ1
i ¼ Ci

1
2

~Wm þ ~Wmþ1
	 


; k̂m;mþ1
i

� �
;

k̂m;mþ1
i ¼ 1

2
kið ~WmÞ þ kið ~Wmþ1Þ
	 


8<
: ð61Þ
and ~W0 ¼W0, ~W3 ¼W3.

A remark is addressed to a specific feature of the canonical equations (60). Looking at the analytical expres-
sions for Cm;mþ1

i;3 , with the help of Appendices A.3 and A.2, it is clear that these vectors take a reference pres-
sure-value over the step equal to the average of the bottom pressure right uspstream and downstream of it. In
order to be coherent with Eq. (8), it is necessary to substitute the previous expression with the corresponding
reference-pressure deriving by Eq. (8) itself. The importance of this point will be stressed in the applications.

5.2.1. C-property of the AWB scheme with the 3RRS solver

As in the 3SRS case, in order to prove that the AWB scheme with 3RRS satisfy the C-property, is sufficient
to demonstrate that the condition of no-motion over discontinuous bed topography is solution of the system
solved by the first step of the 3RRS. Second step is skipped in this situation.

Considering that u0 = u3 = 0, relations (59) give:
~k0;3
1 ¼ a; ~k2 ¼ 0; ~k3 ¼ �a; ð62Þ
where a ¼ 0:5ð
ffiffiffiffiffiffiffi
gh0

p
þ

ffiffiffiffiffiffiffi
gh3

p
Þ. Similarly, the coefficients of the systems (57) and (58) become:
C1;1 ¼ �g~ha

C1;2 ¼ �~ha2

C1;3 ¼ �~ka

2
64

3
75;

C2;1 ¼ 0

C2;2 ¼ 0

C2;3 ¼ 0

2
64

3
75; C1;1 ¼ g~ha

C1;2 ¼ �~ha2

C1;3 ¼ ~ka

2
64

3
75;
where ~h ¼ 0:5ðh0 þ h3Þ. System (57) reduces to the following two equations:
�aðh1 � h3Þ � a2ðu1Þ � aðz1 � z3Þ ¼ 0;

aðh1 � h0Þ � a2ðu1Þ þ aðz1 � z0Þ ¼ 0
ð63Þ
which sum to:
�að2au1 þ h0 � h3 þ z0 � z3Þ ¼ 0: ð64Þ

Considering the condition of horizontal free-surface, i.e. h0 + z0 = h3 + z3, u1 = 0 is solution to the previous
expression. Furthermore, considering that in no-motion condition the bed elevation cannot change, it must
be z1 = z0; as a consequence, h1 = h0 is solution of (63). Similarly, we end up with u2 = 0, z2 = z3 and
h2 = h3 in the second inner-state.

6. Numerical tests

In this section the solutions of a series of test cases, obtained with both the AWB and LHLL schemes, will
be presented. The first group of tests are Riemann problems for the movable-bed equations (5), in which the
bottom shear-stress has been neglected in the momentum equation. The relevant exact solutions have been
worked out by a process of subsequent wave-field construction, starting from either initial-state (left or right),
and coming to define, in the end, the other one. In so doing an inverse problem is solved in the way outlined by
[2,13].

The second group of tests regards a case of practical interest in the field of river engineering, that is the
evolution of a trench, initially dug in the bed, in both subcritical and supercritical conditions. The system
(5) is here solved including also the effect of the friction force on the bottom. In these applications wave inter-
actions and friction effects make the flow more complex, and no relevant exact solution is available; therefore
we could just compare the results of AWB with LHLL.

Beyond their importance in assessing the numerical properties of the schemes, all the test cases have been
chosen also to highlight the role of the morphological changes on the flow when the sediment transport is very
high, or massive, as in debris flows.
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6.1. Riemann problems

We are going to present two different RP tests selected to stress the different behaviour of AWB and LHLL
against exact solutions. Initial conditions are shown in Table 1. To be consistent with the thrust calculation in
the exact solutions, LHLL has been here applied substituting, in Eq. (25), the term ~Hðzn

iþ1 � zn
i Þ with an explicit

evaluation of D obtained from the initial states of the local RP (see Eq. (46)). In this way, LHLL uses the same
evaluation of the thrust term used in the first step of the AWB-3SRS approach. All the simulations make use
of the CFL coefficient equal to 0.95.

Test A. The Riemann problem with data reported in Table 1, Test A, is now considered. The relevant self-
similar solution is composed by two external rarefaction-waves and a central shock (Fig. 7). The shock is mov-
ing slowly, compared with the other two waves, and absorbs most of the initial step in bed profile.

Although convergent, LHLL solution (Fig. 7a) does not capture the shock, which is smoothed out, and
shows there the biggest deviations from the exact solution, at t = 2 s. This mismatch is more and more pro-
nounced as time passes, as it can be inferred from Fig. 8a, which reports the numerical solution at time
t = 20 s, in a reference system moving with the shock speed. The result points out a strong numerical diffusion,
arising from a poor representation of the intercell solution of the RP. In fact, the numerical fluxes at the inter-
cell border and those calculated with the primitive variables at the center cell exhibit a remarkable difference
around the central wave, as shown in Fig. 9a. It must be said that in this test the limiter for the solid-mass
discharge (Eq. 26) never switches on.

On the contrary, the two AWB schemes yield almost undistinguishable solutions, able to capture the central
wave (Fig. 7b) not only at t = 2 s but also as time passes, as shown in Fig. 8b. The shock is well captured but
not perfectly positioned. This outcome is not a trace of leaks in the mass conservations, which is indeed exactly
satisfied at any time. The intimate cause of this error is linked to the approximation of the non-conservative
flux, as explained in Section 4, which leads to a small error in the shock speed. The delay between numerical
and exact shock-position becomes, of course, more important in long-term simulations. As far as the compar-
ison between cell-centered and intercell fluxes is concerned, Fig. 9b shows a remarkable consistency (while
LHLL produced a clear mismatch), although some deviations from the exact values are present, being the
methods employed at a low order of accuracy.

A further comment is addressed to the 3RRS skill to model different expressions for the thrust term, as
described in Section 5.2, and the effect they have on the solution. We consider a test as type A, but with a slight
increment of the initial bed-step, so to enhance the effect under examination. Fig. 10 depicts the effect of dif-
ferent evaluations of the bottom thrust on the flow, which is clearly not negligible.

Test B. The RP with data in Table 1, Test B, is here considered. The relevant self-similar solution is com-
posed, from left to right, by two-rarefaction waves and a shock (Fig. 11). The central wave is a quite-slowly
moving rarefaction, bearing most of the initial step of the bed profile, whereas the shock is very weak, almost
ineffective for the bed.

In this test the LHLL solutions are affected by the limiter (Eq. (26)). Switching it off, the solution has a very
smeared bed-profile in the central rarefaction (Fig. 11a). Again, as in Test A, this diffusive behaviour attends
differences between the fluxes evaluated in the middle and at the intercell side of the cells; Fig. 12a illustrates
this point around the central rarefaction for the solid-mass discharge, the least accurate flux in the numerical
solution. The numerical flux displays a very different behaviour respect the exact one, reaching even negative
values. This situation is completely unphysical, because liquid and solid discharges have to move accordingly
with the mixture velocity u. LHLL results obtained with the limiter are presented in Fig. 11b. They are less
diffusive and have smaller errors than the companion solution without the limiter. Fig. 13a illustrates the
Table 1
Initial values for the test cases

Test A Test B

(m) (m/s) (m) (m) (m/s) (m)

hL = 2.00 uL = 1.00 zL = 3.00 hL = 6.00 uL = 0.01 zL = 1.00
hR = 5.00 uR = 3.54 zR = 1.14 hR = 0.38 uR = 5.01 zR = 3.75



(a)

(b)

Fig. 7. Test A: evaluation of free-surface (x), bed profile (n) and velocity (e) at t = 2 s and with Dx = 0.1 m. Comparison between exact
solution (—) and result of: (a) LHLL, (b) AWB-(3SRS,3RRS).
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(a) (b)



(a) (b)

(c) (d)

Fig. 11. Test B: evaluation of free-surface (x), bed profile (n) and velocity (e) at t = 1 s and with Dx = 0.1 m. Comparison between exact
solution (—) and results of: (a) LHLL without limiter, (b) LHLL with the limiter, (c) AWB-3SRS, (d) AWB-3RRS.
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bed profiles, at t = 30 s, around the middle wave, including both the solutions obtained with and without the
limiter. It may be noticed that the solution with the limiter presents a central field shaped as a compound
wave, formed by a piece of shock with, on either side, two pieces of rarefactions. This particular and wrong
wave pattern is present also at the early stage of the flow, although, as observed at t = 1 s (see Fig. 11b), it
cannot be appreciated. As time passes, the strength of the central shock reduces more and more and the
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solution tends to the extremely diffusive one obtained without the limiter: in the long run, the limiter ceases to
be effective on the solution. This behaviour is almost independent on the grid refinements.

Numerical solutions of the two AWB versions are quite similar and fit rather well the exact one, including
the central rarefaction-wave, where the LHLL, with and without the limiter, failed. In Figs. 11c and d, the
graph of the primitive variables is sketched at time t = 1 s: apparently very small differences may be appreci-
ated between the AWB solutions and the LHLL(+limiter) one. Nevertheless, at a careful inspection, fluxes
present different values around the middle rarefacion, as shown in Figs. 12b–d. These differences are respon-
sible of the fact that, as time passes, while the AWB solutions keep a good description of the rarefaction
(Fig. 13b), the LHLL ones degenerate (Fig. 13a). After this comparison, it may be inferred that the proposed
AWB method is qualified to predict good solutions also on long term, till the unsteady character of the RP
solutions above considered is damped out. These cases offer, once more, a sharp impression on how
sensitive is the numerical prediction of shallow-water flows over movable bed. Small changes in the numerical
strategy, as switching on/off the limiter in the LHLL method, may yield sensible variations, at least at the early
stages. AWB, on the whole, appears to give sound answers to all the Riemann tests exhaminated, for short and
long times. Same overall behaviours have been observed in several other tests, performed but not here
reported for sake of brevity.

6.2. Evolution of a trench

The tests presented in this section regard the evolution of a trench dug in river bed. The trench has been
schematized as a big cavity in the bed with assigned geometry (Fig. 14). Essentially it has a trapezoidal shape
and a straight bed line with the same slope of the external domain. The initial banks of the trench are very
steep. To sort out the effects on the flow induced by the trench, both reaches upstream and downstream of
it are supposed to be in steady uniform conditions and long enough to make boundary conditions not influ-
ential. The flow is strongly unsteady after the start, and then it develops toward asymptotic uniform condi-
tions. As the flow evolves, the bottom friction term plays a fundamental role and is therefore kept in the
model. Its local value has been computed by means of the Chézy formulation,
Table
Values

Fr

if
v
b
h0

U0
s
qw

¼ g
v

u2 ð65Þ
being v (m1/2/s) the Chézy friction factor. To discretize this term a standard splitting technique for source
terms is adopted. The ODE of the source problem (dU/dt = S(U)) associated to system (5) is solved by an
implicit Euler scheme. Details of this approach can be found in [14].

Initial conditions consist, on either side of the trench, of the uniform flow depth h0 and velocity U0 given in
Table 2. The bed slope is consistent with Eq. (65), while the other parameters in the table allow to calculate the
sediment transport and the sediment concentration in the same uniform reaches. In the trench it is initially
imposed a volumetric discharge equal to U0h0, and a straight free-surface line tilted with slope if and aligned
with the free-surface outside the trench; the flow depth is therefore initially greater in the trench, and the veloc-
ity, as a consequence, smaller.

It is expected that waves soon arise from the two banks of the trench and, after a short time, interact each
other giving rise to compound structures: some of them run the flow domain toward the upstream end, the
remainder ones toward the downstream end. Amplitudes and speed of these compound waves are not the
same, and depend both on the trench geometry and the features of the basic uniform flows, in particular
2
of physical variables and parameters employed in the trench-evolution test

Subcritical condition Supercritical condition

Froude number 0.85 1.2
Bed slope 8.83 · 10�3 1.57 · 10�2

(m1/2/s) 28.32 29.88
(m1/2/s) 1 · 10�4 5 · 10�4

(m) 2. 2.
(m/s) 3.76 5.31
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on the Froude number. For a specific analysis of this topic we address to [24]. Because of the above consid-
erations, we decided to simulate two different situations, the first one with a subcritical uniform flow (Fr < 1),
the second one with a supercritical uniform flow (Fr > 1).

All the following numerical simulation has been performed using cell width Dx = 0.05 m and CFL coeffi-
cient equal to 0.95.

6.2.1. Supercritical condition

In this test the trench is 2 m long, 0.9 m deep and the slope of the trench banks is equal to 5. Fig. 14 presents the
numerical evolution of the bed profile at two different times, obtained with the different methods. Because of the
supercritical condition, the presence of the trench induces significant effects both upstream and downstream
along the torrent. The snapshot shows two separate wave structures forming on the bed. Between the two, a piece
of almost flat bed-profile takes place, which remains below the original level of the bed at the two upper edges of
the trench. The wave structure moving downstream is quite strong at the first time, and becomes weaker at the
subsequent observation. On the contrary, the trough-shaped bed-wave moving upstream reduces its strength, as
time passes, at a much smaller rate. This behaviour, somehow surprising, is reminiscent of the way bedforms
called antidunes evolve in a river bed. Comparing the results of the two methods, LHLL is more diffusive than
AWB and clear differences affect both the bed-wave structure and the region in between. As time passes these
differences are reducing, also because the bottom friction source term becomes more and more influencing the
outcome. The asymptotic uniform flow condition is expected, in fact, to be the same for the two methods.

6.2.2. Subcritical conditions

The trench is 2 m long, 0.6 m deep and the slope of the sides is equal to 5. Fig. 15 presents the numerical
evolution of the bed profile at two different times, obtained with the different methods. Opposite to the case
previously described, the present subcritical conditions determine (or should, at least theoretically) major
downstream effects, whereas in the upstream direction just small perturbations on the bed propagate. Relying
on AWB results, the snapshot shows that the upstream bank of the trench moves downstream very slowly, and
(a)

(b)

Fig. 14. Evolution of an initial trench (� � �) in supercritical conditions: numerical solution obtained, at (a) t = 10 s, (b) t = 20 s, with (�)
LHLL and (s) AWB-3SRS.



(a)

(b)

Fig. 15. Evolution of an initial trench (� � �) in subcritical conditions: numerical solution obtained, at (a) t = 30 s, (b) t = 60 s, with (�)
LHLL and (s) AWB-3SRS.
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keeps its steepness; the downstream bank of the trench is displacing in the flow direction with a shape which is
milder at later times, resembling a rarefaction curve. The bottom of the trench moves and reduces, but remain,
this time, perfectly overlapping to the original one. A similar behaviour is experimentally and numerically
observed by [23]. Comparing the results of the two methods, LHLL strongly diffuses around the upstream
bank, triggering an unphysical wave spanning also in the domain upstream of the initial trench position.
The downstream bank of the trench is developing the strange compound wave already described in Section
(6), dealing with the RP test B. This wave has a central discontinuous core, which is swept away at longer
times, as visible in Fig. 15, too. All considered, differences in the numerical results by the two methods are
more impressive in this sub-critical case, where they also last longer.

7. Conclusions

In this paper the rapid transients of shallow water flows over an erosional bed have been considered. The
material entrainment from the bed creates a strong interaction with the free-surface current, resulting in the
possible formation of strong and weak shocks. Their simulations demand for a formulation of a mathematical
model able to handle the geomorphic behaviour.

A new numerical model has been here proposed, a finite volume method based on a Godunov-type evalu-
ation of the fluxes. It represents an extension to the case of movable bed of a well-balanced technique already
proposed for shallow water flows over rigid bed with topographical indentations. This new scheme, named
AWB, looks for an approximated solution of the intercell RP. We developed new RP-solvers which deploy
the complete wave-structure, keep the coupling between bed and flow dynamics and, without any split, embody
the effect of the non-conservative pressure-thrust on the bottom. This procedure is worked out into two steps,
so to achieve a degree of implicitness in the treatment of the non-conservative term.

To assess the skill of the new scheme, we compared the numerical results with new exact solutions of Rie-
mann problems. In addition, applications to cases of practical interest have been considered, where the friction
forces on the bed are taken into account. Along with the new AWB method, we also applied, to the same test
cases, an existing Godunov-type method, named LHLL, based on the same mathematical model.
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Results for AWB are quite satisfying. The new method works well in both the RPs and in the applicative
tests. Simple and compound waves are well predicted at the different stages of the solution, without significant
spurious diffusion and inaccuracy. Comparisons with LHLL results, which show significant limits, allow to
understand the importance of the well-balanced calculation of the fluxes and of the implicit, unsplit evaluation
of the non-conservative term in AWB.

The new method has been here presented at the first-order of accuracy to assess the substantial improve-
ment due to the novel key-features introduced. A second-order version can be straightforwardly obtained
by MUSCL-Hancock technique, following [14]. The results make it promising to be applicable also to real
situations, where, beyond the many sources of complexity, there is a more stringent demand for accuracy
in predicting the morphological evolution, which must be followed for long time.
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Appendix A

A.1. Summary of the notation used in this paper

Variables in a RP are defined both inside the constant-value zones and across the waves that connect two
constant states; moreover they may be associated to an eigenvalue; at last, because of the self-similarity of the
solution, they are time-independent and no explicit indication about time is needed. Therefore, the following
notation has been assumed:
Xn () vector variable evaluated in the nth zone of a RP

Xn
j () jth component of a vector variable evaluated in the nth zone of a RP

Ci () vector variable associated to the ith eigenvalue of a RP
Ci,j () jth component of a vector variable associated to the ith eigenvalue of a RP
Wn,m () vector variable defined across zone m and n of a RP
Wn;m

j () jth component of a vector variable defined across zone m and n of a RP
Wn;m

i�1=2 () vector variable defined across zone m and n of a RP located at at x = i ± 1/2.

Moreover, the following equivalences has been set:
k ¼ ghðcDþ 1Þ; r ¼ qg þ 2;

q ¼ bcbD; s ¼ 1

2
ru2 þ gh:
A.2. Characteristic polynomial

The characteristic polynomial deriving from (18) is:
a3k
3 þ a2k

2 þ a1kþ a0 ¼ 0;
where
a3 ¼ hþ u2ð2bþ 3qÞ;

a2 ¼ �quð7u2 þ gðbu2 þ hÞÞ þ ub �5u2 þ 2gh
k
h
� 1

� �� �
� 2uh;

a1 ¼
1

2
qu2ðð8þ 3bgÞu2 þ ghÞ � bu2 �3u2 þ gh 5

k
h
� 3

� �� �
� hðgh� u2Þ;

a0 ¼ 3kgbu3:
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A.3. Coefficients of the linearized characteristic equations

Coefficients of the linearized characteristic equation (24) are expressed by the following relations:
Ci;1ðW; kiÞ ¼ � 1

2
qu2 � h

� �
gki;

Ci;2ðW; kiÞ ¼ 2
ki

cb

ðs� kiuÞ þ
u� ki

cb

k
� �

bcbuþ ðu� kiÞkið3qu2 þ hÞ;

Ci;3ðW; kiÞ ¼ ðu� kiÞk:
A.4. Quartic polynomial of the 3SRS for the mobile-bed case

In this appendix, we give the expression of the terms available after the solution of the linear part of the
3SRS system and which are then used in Eq. (52). Moreover, we will give the expression of the terms of
the quartic polynomial of the 3SRS. Setting
a ¼ 1

ð�SL þ S12ÞðSR � SLÞ
; l ¼ �Dð�SL þ SRÞð�SL þ S12Þ

ð�SL þ S12ÞðSR � SLÞ
;

Dtot ¼ D12 þ D01 þ D21
we have:
F 1
1 ¼ axþ b; F 1

2 ¼ cxþ d; U 1
1 ¼ exþ f ;
where
a ¼ lSL;

b ¼ afSRS12F 01 þ S2
Lð�U 02DðS12 � SL þ SRÞ þ U 03Þ þ SL½DF 02ðS12 � SL þ SRÞ � S12ðF 31 þ DF 32Þ

þ F 33 � F 03� � SLSRðS12ð�U 31 þ U 01 þ DU 32Þ þ U 33Þ þ SLDtotg;
c ¼ SL;

d ¼ F 02 � U 02SL;

e ¼ l;

f ¼ af�F 03 þ F 33 þ F 01ðS12 � SL þ SRÞ þ DF 02ðS12 � SL þ SRÞ � S12ðF 31 þ DF 32Þ þ SRS12ðU 31 þ DU 32Þ
� SRU 33 � SLððU 01 þ DU 02ÞðS12 � SL þ SRÞ � U 03Þ þ SLDtotg:
The quartic polynomial in U 1
2 ¼ x is:
q4x4 þ q3x3 þ q2x2 þ q1xþ q0 ¼ 0;
where:
q4 ¼ cðcbe� 1Þ3;

q3 ¼ cbedð3þ ecbðecb � 3ÞÞ þ 3cbfcðecb � 1Þ2 þ 3bc2
bacðcba� cÞ þ cbbðc3 � c3

ba3Þ � d;

q2 ¼ 3 �1

2
bc3

babð2cba� cÞþ ec2
bf ðcbfcþ dðecb� 2ÞÞ�bdcbcð2cba� cÞþ cbf ð�cbfcþ dÞþbc2

bða2dcb� c2bÞ
� �

;

q1 ¼ 3 bc3
babð2d � cbbÞ � bd2cbðcba� cÞc2

bf 2 1

3
cbfcþ dðecb � 1Þ

� �
� bc2

bbcð2d � cbbÞ
� �

;

q0 ¼ �3bdc2
bbðd � cbbÞ þ cbdðbd2 þ c2

bf 3Þ � c4
bbb3:
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